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Equations for the steady flow of an incompressible, inviscid fluid through a collapsible 
tube under longitudinal tension are derived by treating the tube longitudinally as 
a membrane, and taking the collapsibility of the tube into account in an approximate 
way by replacing in the equation for an axisymmetric membrane a term representing 
the resistance of the tube to area change by the tube law for collapsible tubes. The 
flow is assumed to be uniform in a cross-section. A nonlinear differential equation 
is obtained for the shape of the tube for given values of total pressure p,, flow rate 
q, longitudinal tension 7 and tube law P = P(p) ; where p = (A/xR2): is the equivalent 
radius of the tube ( A  = area of a cross-section, R = radius of the unloaded, then 
circular tube). The equation can be integrated and analysed in the phase plane. 
Equilibrium points correspond to uniform flow through cylindrical tubes ; saddle 
points correspond to subcritical ,flow (S  < l) ,  centrepoints to supercritical (S > 1 )  
and a higher-order point to critical flow (S  = 1).  Here S is the speed index, the ratio 
of the flow speed to the speed of long waves. Near centrepoints there are solutions, 
that represent area-periodic tubes. For a finite tube, held open at the ends, the steady 
flow is formulated as a two-point boundary-value problem. On the basis of numerical 
calculations, and a bifurcation analysis using the method of Lyapunov-Schmidt, the 
existence and multiplicity of the solutions of this problem are discussed and the 
process of flow limitation studied. For negative total pressures two collapsed solutions 
are found that disappear a t  the flow-limitation value of the flow rate. For positive 
total pressures a distinction is made between subcritical, critical and supercritical 
total pressures. In  all these cases there is a multiplicity, proportional to the ratio of 
the tube length to 9; (0 ) ,  the wavelength of the collapsed periodic solution for 
vanishing flow rate, and having maximum radius p = 1 .  For subcritical total 
pressures increase of the flow rate leads to a gradual loss of all solutions in higher-order 
flow limitations until final flow limitation occurs by the mergence of two collapsed 
solutions. For supercritical total pressures increase of the flow rate also leads to a 
gradual loss of all solutions in higher-order flow limitations in a process which now 
also depends upon the ratio of the tube length to the wavelength L of periodic 
solutions with vanishing amplitude and p = 1 .  

1. Introduction 
A collapsible tube is an elastic tube characterized by the fact that  it changes 

drastically in cross-sectional shape (and area) owing to small changes in transmural 
pressure (the difference between the internal and external pressure) close to zero. 
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Flows through such tubes are of physiological interest in relation to flow of blood 
through veins (and to some extent through arteries), air flow through the pulmonary 
airways and flow through the urinary tracts, to list a few examples (Shapiro 1977; 
Pedley 1980). Also, technical applications are known, such as the flexible cold-water 
pipe used in ocean-thermo-energy installations to bring the cold water in deep oceans 
up and in contact with the warmer surface water in order to derive energy. There 
have been a large number of laboratory experiments to investigate the properties of 
collapsing tubes with segments of rubber tube, often spanned between rigid inlet and 
outlet tubes and contained in a pressurized chamber. Incompressible fluid flows along 
the tube from a constant-head reservoir, and the flow rate can be controlled by 
adjusting the resistances of the rigid parts of the system upstream and downstream 
of the collapsible segment. In  these experiments ‘flow limitation’ can be observed, 
showing the phenomenon that the flow rate cannot continue to be increased by 
lowering the pressure just downstream of the collapsible segment further, while 
keeping the pressure upstream of the segment and that in the pressurized chamber 
constant. A common result in these experiments has also been the appearance of 
self-excited and self-sustaining oscillations in the tube cross-sectional area and the 
outflow velocity for a range of values of the governing parameters (Conrad 1969; 
Katz, Chen & Moreno 1969; Ur & Gordon 1970; Brower & Scholten 1975; Griffiths 
1977; Bonis & Ribreau 1978; Lyon et al. 1981; Bertram 1982). 

Several models have been proposed both for the excitation and for the perpetuation 
of these oscillations, incorporating various physical mechanisms that seem to be 
important. One such mechanism is ‘choking’ (Shapiro 1977, p. 135), which occurs 
when at any point along the collapsible tube the cross-sectionally averaged fluid 
velocity in the tube attains the local value of the speed of propagation of small- 
amplitude pressure waves, whereas at the same time a steady-flow solution becomes 
impossible in a one-dimensional model in which the elastic properties of the tube are 
represented by a ‘tube law’, i.e. the transmural pressure at any point is taken to be 
a single-valued function of the cross-sectional area at  that point. Breakdown of steady 
flow through choking seems to have occurred in several experiments, as reported for 
example by Brower & Scholten (1975), Griffiths (1977) and Bonis & Ribreau (1978). 
It is usually connected with ‘flow limitation’, since in a dynamic explanation of this 
phenomenon a lowering of the downstream pressure sends an expansion wave 
upstream which cannot pass the point where the flow is ‘critical’ (flow speed equals 
wave speed). Roll-wave instability has also been suggested, which is associated with 
the variation of viscous resistance with cross-sectional area (Pedley 1980). A 
mechanism that can trigger off oscillations in ‘subcritical’ (flow speed less than wave 
speed) flow also, although i t  causes much stronger oscillations in ‘supercritical ’ flow, 
has been modelled by Pedley (1980), Bertram & Pedley (1982) and Cancelli & Pedley 
(1985). A critical factor in this mechanism is the amount of energy lost in the flow 
emerging as a turbulent jet from the time-dependent constriction in the collapsible 
tube. The dynamics of the oscillations is then dominated by longitudinal movement 
of the point of flow separation, in response to the adverse pressure gradient associated 
with waves propagating backwards and forwards along the collapsible tube. A model 
incorporating this mechanism should include the important constraints exerted on 
such oscillations by the mechanical properties of the upstream and downstream rigid 
segments (Cancelli & Pedley 1985). One feature that is known to be important in 
many experiments, i.e. longitudinal tension in the tube wall which provides a force 
resisting collapse in addition to the force provided by the transverse bending stiffness 
of the tube wall, has only recently been included in the modelling of this mechanism 
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(Cancelli & Pedley 1985). The effects of longitudinal tension were taken into account 
by a correction term added to the tube law in a manner similar to that of McClurken 
et al. (1981). who studied theoretically steady, supercritical flow in collapsible tubes 
with a shock-like transition to subcritical flow, in addition to  the experimental study 
by Kececioglu et al. (1981) on the same subject. The motion of fluid and wall was 
studied by solving numerically an initial-boundary-value problem for a fourth-order 
system of differential equations involving z and t as independent variables, where z 
is measured along the tube axis and t is time. The boundary conditions correspond 
to a collapsible tube held open at its ends and to the pressures there dictated by the 
mechanical properties of the rigid parts of the system and the pressures far upstream 
and far downstream. The initial state was taken to be one in which the collapsed 
segment has uniform area and the velocity is uniform and subcritical. Collapse of the 
tube is then initiated by increasing the pressure in the surrounding chamber over a 
short time to a higher constant value. In  some cases a steady state is eventually set 
up and in some cases oscillations develop. 

The study presented in the present paper was motivated by the wish to obtain a 
better understanding of possible mechanisms of self-excited oscillations in collapsible 
tubes when the effects of longitudinal tension are taken into account. Apart from the 
mechanism modelled by Cancelli & Pedley (1985) in which flow separation plays an 
essential role, oscillations are also predicted by a highly simplified model of the 
hydraulic circuit as a mass-spring system, and also when neglecting dissipation effects 
altogether (Schoendorfer & Shapiro 1977). Before studying a possible inviscid 
mechanism for these unsteady flows, it is of interest to study the question of the 
existence and stability of steady inviscid flow of an incompressible fluid through a 
collapsible tube held open at the ends, thereby excerting a longitudinal pulling force 
on the tube. I n  this paper the emphasis will be on the first question by deriving a 
nonlinear differential equation for the shape of the tube, i.e. the change of cross- 
sectional area with distance along the tube and by formulating a two-point 
boundary-value problem to find the shape of a tube held open at the ends. On the 
basis of numerical calculations for various sets of values of total pressure p, ,  flow rate 
q, a given pulling force 7, and the results of a bifurcation analysis for some specific 
values of these parameters, the existence and multiplicity of solutions will be 
discussed. I n  particular what happens when, for a given value of the total pressure, 
the flow rate is given increasing values will be discussed, thus also describing the 
process of ‘flow limitation’. Although inviscid flow is the object of this paper, and 
further research is needed to access viscous effects on the results, if separation occurs, 
the present calculations also provide a basis for comparison with experimental results. 
The main point to be made now, however, is to emphasize qualitative effects such 
as the multiplicity of solutions of the boundary-value problem and the process of flow 
limitation. 

2. Steady flow of an inviscid, incompressible fluid through a cylindrical 
collapsible tube. Flow limitation in cylindrical tubes 

The steady flow of an inviscid, incompressible fluid through a cylindrical (not 
necessarily circular) collapsible tube is a relatively easy case to study and the effects 
of longitudinal tension are not difficult to access. In  the rest of the paper we shall 
need these flows, however, as special solutions. Moreover, some idea of how a 
multiplicity of solutions of the boundary-value problem arises and how the process 
of ‘flow limitation’ develops may be obtained from simple considerations. Let A be 
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the cross-sectional area of the tube, pf the density of the inviscid, incompressible fluid 
which is flowing with a uniform speed V and let P, be the total pressure in the flow. 
Then, Bernoulli’s equation may be written as 

where P i s  the pressure in the tube, and Q = V A  is the (constant) volume flow through 
the tube. Let pressures be measured as differences with the pressure outside the tube, 
which is assumed to be constant. Since we want to consider elastic tubes, we 
non-dimensionalize (1)  using R, t and E ,  being the inner radius of the then circular 
tube at zero pressure, the thickness of the undeformed wall and Young’s modulus 
of the elastic material respectively. Then, with 

( 1 )  may be written as 2 
p = p -P 

O P4 
(3) 

Because of the elasticity of the tube, its cross-sectional area changes with pressure; 
for collapsible tubes the relation between the two is called the ‘tube law’. In the 
literature several discussions may be found with regard to proper forms of this ‘tube 
law’ (Shapiro 1977; Pedley 1980; Kececioglu et al. 1981; Cancelli & Pedley 1985). If 
the tube is highly collapsed, such that opposite walls are in contact, stretchless 
bending theory gives a similarity solution, which is in good agreement with 
experimental observations (Kececioglu et al. 1981 ). Then 

P R  P __ = P(p)  = -- 
Et P 3 ’  

(4) 

where /3 = ~ t 2 / R 2 ( l - p 2 ) ,  and p is Poisson’s ratio. In  order to arrive a t  a simple 
analytic expression that  is consistent with (4) for small p and satisfies P(l) = 0, a 
modified similarity law was proposed by Shapiro (1977): 

This law was used in the numerical calculations for p ,< 1 ,  as reported in this paper. 
For P the value 0.001 was selected, which with p = 0.5 corresponds to a wall 
thickness/tube radius ratio of about 0.1. For p 2 1 a tube law may be derived from 
membrane theory for a circularly cylindrical tube made of an elastic material obeying 
Hooke’s law 

P(p) = 1-- { l+p(l-p)} .  (6) ( 3 
It is well known that for an incompressible material p = 0.5. However, the large 
stiffening effect when the collapsed tube is pressurized and brought into an inflated 
(circular) shape occurs even for small values ofp - 1 and, unless quantitative precision 
is aimed at, for simplicity the term p(1 - p )  can be dropped, which effectively can 
be done by taking p = 0. Moreover, the use of (6) for large inflations would in any 
case not be accurate since for large deformations the application of Hooke’s law would 
not be justified. As a result, in the numerical calculations that are reported in the 
present paper (6) was used with p = 0, thus accounting for the effect of the larger 
stiffness of the inflated tube without claiming quantitative precision for larger 
deformations. 
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FIGURE 1. Representation of uniform-flow solutions in the parameter plane p o ,  q 2 ;  
p ,  = total pressure, q = flow rate. 

If the tube law is combined with Bernoulli's equation (3) ,  we get 

pop4-p4P(p)-q2 = 0, (7)  

the solutions of which yield the values of the area of a cylindrical collapsible tube 
that allow the passage of a uniform flow with given total pressure and flow rate. In 
the (p,, @)-plane, (7) can be represented by a bundle of straight lines on which p (and 
thenp) is constant, such as illustrated in figure 1. Only q2 > 0 and values ofp, between 
some negative and positive bounds are of interest. For a wide class of tube laws this 
bundle may be expected to have an envelope separating regions in the (p,, q2)-plane 
with no solutions and more solutions of (7). This may be seen by noting that if for 
p-tO the tube law satisfies (4), then the line for p = 0 coincides with q2 = 0, whereas 
for p = 1, with P ( 1 )  = 0 the straight line is given by q2 = p,, and there is a continuous 
change with p of the slope of the lines p = constant. An envelope of (7) is given by 

Po = P ( P )  +iPpp'(P), q2 = iP5P'(P)3 (8) 

which thus has the slope dq2/dpo = p4. Since for p = 0 the straight line coincides with 
q2 = 0 and the slope of the envelope vanishes, the envelope approaches the axis q2 = 0 
asymptotically as p+O. It has the slope 1 for p = 1 and the line p = 1 is tangent to 
it at ($P'(l),iP'(l)). If we require that the envelope is concave upwards and is 
represented by a univalent function of p,, then there exists a region I above the 
envelope with no solutions of (7) and a region I1 below the envelope with just two 
solutions of (7). If on the envelope we require p to be an increasing function of p,, 
dq2/dpo = p4 tells us that the envelope is concave upwards. With (S), the condition 
dpldp, > 0 leads to { P ( p )  +&d"(p)}' > 0, which, incidently, is satisfied for ( 5 )  and (6) 
with p = 0. In figure 1 the region I1 is subdivided into three regions: region IIa with 
p ,  < +P'( 1) and above the line p = 1, containing only collapsed solutions p1 < p2 < 1 ; 
region IIb below the line p = 1 containing a collapsed and an inflated solution 
p1 < 1 < p 2 ;  and region IIc above the line p = 1 and p, > iP'(1) containing only 
inflated solutions 1 < p1 < p2. 

The envelope points at the phenomenon of 'flow limitation', which in this context 
may be defined as the occurrence of a maximum flow rate that the tube can convey 
for a given total pressure. When for a given p,, the flow rate is increased, the two 
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solutions in region I1 approach one another and coincide a t  the maximum flow rate. 
The solution at flow limitation represents a collapsed tube near region IIa and an 
inflated tube near IIc. In  relation to a dynamic explanation of flow limitation it is 
of interest to relate the flow speed V to the wave speed C of small pressure waves, 
which may be determined from the tube law given by 

The speed index S = V / C  will then be 

From (8) now follows that on the envelope S = 1 ; so flow limitation occurs when the 
speeds equals the wave speed. The flow will be called 'critical' in that  case, and 
'subcritical' for S < 1, supercritical' for S > 1 .  The variation of S on a line 
p = constant follows from (8) and (10) and is S = 0 for q2 = 0, S < 1 on the segment 
between p2 = 0 and the envelope and S > 1 on the segment beyond the point of 
tangency with the envelope. 

3. Steady flow of an inviscid, incompressible fluid through collapsible tubes 
under longitudinal tension 

In  a full description as an elastic structure, the collapsible tube is a three- 
dimensional shell of a complicated shape, experiencing large deformations. At the 
present stage, however, with grossly simplified models of this structure, valuable 
information may still be obtained. In particular, some success has been achieved by 
taking into account longitudinal tension effects in one-dimensional models of flow 
through collapsible tubes through a correction term added to the tube law (McClurken 
et al. 1981 ; Cancelli & Pedley 1985). To this end McClurken et al. (1981) assumed the 
tube cross-section to consist of two parallel lines separated by the distance 2y and 
connected by semicircles of radius y. As the separation 2y changes, the cross-sectional 
area also changes. However, if it  is assumed that the perimeter is constant and equal 
to that of a circle of radius Ro = ;Do = (A,/K)+ each straight segment is of length 
x(B0-- y). Thus the cross-sectional area may be expressed as A = xy(D, - y), and then 

y = +Do [ 1 -( 1 - 3 1 .  
The correction term to the tube law is obtained by noting that longitudinal membrane 
forces in the parallel surfaces of the tube model are capable of supporting a pressure 
difference, which may be estimated by AP = - T / R ,  where T is the axial force per 
unit perimeter, assumed to be constant along the tube, and R is the longitudinal 
radius of curvature in an axial plane. With (1 1)  this leads to 

As stated by McClurken et al. (1981). this model becomes quite unrealistic when 
the tube is nearly round, as also may be expected from the blow up of (12) when 
A + A o .  In their analysis the factor (l-(A/Ao))i in the denominator of (12) is, on 
occasion, left out on an ad hoc basis. Cancelli & Pedley (1985) used another ad hoc 
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assumption by replacing (11) by y = +Do(A/Ao).  In  the present paper a somewhat 
different approach is followed, which eventually leads to a result that  also may be 
interpreted as giving a correction to the tube law. The starting point is the 
observation that inflation to an axially symmetric shape of a thin-walled initially 
circularly cylindrical elastic tube obeying Hooke’s law may quite accurately be 
described by membrane theory. Let us indicate the tension tangent to the tube 
surface in the longitudinal direction by a, and in a cross-section by a,, and the 
thickness of the wall under stress by t ’ ;  then the equilibrium equations can be 

d t‘a, r 

€or the horizontal equilibrium, and 

dr 
t‘a, r - 

d I- dx 

for the vertical equilibrium. Here, P = P ( x )  is the pressure in the tube and r = r(x) 
the radius, where x is measured along the tube length. When (13) is substituted into 
(14), the well-known membrane formula (den Hartog 1952) is obtained : 

. d2r 
- t‘a, - 

dx2 t’v, 
= P .  

+ ( ~ Y J  + r [ l +  (g~]: 
Furthermore, the following stress-strain relations are valid : 

E - -(v,--pa,), 1 em = z(am-paJ, 1 - t’ = l--(a,+a,), P (16a, 6 ,  c )  ‘ - E  t E 

where el and E, are the relative strains in the longitudinal and meridional directions 
respectively. Also we have the geometrical relation 

r 
R Em = -- 1. (17) 

For a circular tube, Bernoulli’s equation (1) may be written as 

P = Po--- Pf Q2 

27c2r4 ’ 

which upon insertion in (13) and integration leads to an expression for U, : 

where h is an integration constant. The axial force T in the tube at a station where 
r = R is then 
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where pa and q are the non-dimensionalized total pressure and flow rate, as in (2 ) .  
If h is eliminated from (19) and (20) ,  and 6 = x /R ,  d = t ' / t ,  u = a,/E, r = T/xEtR, 
p = r / R  are used to non-dimensionalize there follows 

Substituting (17) and (19)  in (166) yields vm; using this result and u1 from (19) in 
(16c) gives in a quadratic equation for d ,  which upon taking the proper root and 
non-dimensionalization gives 

(22)  

Finally, using the expressions for urn, 0-, and d ,  and (18)  in the membrane formula 
(15) yields 

x { 1 +($)2} = 0 ,  (23) 

which gives the shape of the tube for given total pressure, flow rate and axial force 
at r = R (Reyn 1982). No ad hoc assumptions have been made so far, and (23) could 
be used for more accurate calculations. It includes the equation for uniform flows 
through inflated cylindrical tubes under axial tension, in which case there is the 
combined effect of the lateral contraction through Poisson's ratio already present in 
an unpressurized tube under tension, and an inflation by the pressure in the tube. 
In the problem to be studied in this paper the first effect can be accounted for by 
a 7-dependent correction of A ,  and t ,  and adjusting the boundary conditions arising 
from the requirement that the tube is held open a t  its ends. As may be seen later, 
such an adjustment will not change the variety of solutions of the boundary-value 
problem at hand and, for simplicity, we will refrain from doing so. Moreover, we shall 
use the approximation of the 'tube law' (6) for slightly inflated tubes by dropping 
the term containing p. For these reasons, primarily to obtain a simpler equation, we 
put p = 0 in (23) ,  which then, using (6) (with p = O),  may be written as 

(24) 

Although (24)  is derived on the assumption, that the tube is axially symmetric 
it can be given a meaning for collapsible tubes since p and P(p)  are then also defined. 
In particular (24) includes (7), the equation for uniform flows through cylindrical 
tubes, also when the tube is collapsed and for P ( p )  a tube law for collapsible tubes 
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is used. Therefore, as an approximation, (24)  will also be used to determine the area 
variation of non-cylindrical collapsible tubes. Stated differently, (24) determines for 
a given total pressure, flow rate and axial force at r = R, the area variation of a tube 
with a, to some extent unrealistic, elastic structure, yet containing sufficient essential 
features to yield valuable qualitative information about real tube behaviour. 

An attractive feature of (24)  is that, to some extent, it can be integrated 
analytically so that a favourable starting point can be chosen for its numerical 
integration. Integration in the phase plane yields 

Cpz - 2p2 J1” aP(a) da i 1 +  (3‘)” - = q2+(7-Po-q2)p2+Pop43 (25) 

where C is an integration constant. Further integration gives 

for the shape of the tube. Even if simple analytic expressions for the tube law are 
used, there can be little hope that (26) can be evaluated in terms of elementary 
functions. However, i t  can be used as a starting point for numerical calculations. In 
the phase plane, with p = p(s), dp/d[ = y = y(s), (24)  can be written as the system 

I - dP = {q2+(7-po-q2)p2+PoP4~PY~ 
ds 

- dY = 2p4P(p){1 +y2}1+2(q2-p0p4)(1 +y2).) 
ds 

Various qualitatively different phase portraits that may occur are sketched in 
figure 2 ;  the arrows point in the direction of increasing E. Phase portraits are 
symmetric with respect to the p-axis. Equilibrium points are given by the solutions 
of 

which represent the uniform flows in cylindrical tubes discussed in the preceding 
section. For q = 0, in addition, the y-axis also consists of equilibrium points. Near 
simple equilibrium points (in p = pi, y = 0) (27)  may be linearized to yield, with 
p = p-pi ,  y = y, 

p o  p4 -p4P(p)  - q2 = 0, y = 0, (28) 

(29) 

- dp = {q2+ (7-p0-q2)p?+popi4}piY, 
ds 

When the wave speed is non-dimensionalized and (9) is used there follows 

With the use of (lo), (21) ,  (28) and (30), the eigenvalues of the coefficient matrix of 
(29) may then be found: 

Al,2 = f2p,3ct{2C7,(1 -S?)]i. (31) 

16 F L M  174 
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Phase portraits for no flow are given in figure 2 (u-c). There is one equilibrium point 
on the p-axis if p ,  = P(pi) has a unique solution for pi,  which is true for common tube 
laws. If, furthermore, P(p)  5 0 for p 5 1 ,  then pi( = p z )  5 1 for p ,  5 0, and with (21) 
it may be seen that gi( = g 2 )  > 0 if 7 > 0. As a result, (31) shows that the equilibrium 
point is a saddle point. It corresponds to the cylinder-type solution. Other types of 
solution are those showing somewhere along the tube a minimal (maximal) area of 
the tube and a continuous widening (narrowing) of the tube away from it, and also 
solutions with a continuous widening or narrowing all along the tube. These solutions 
eventually either enter a region where the tube is highly collapsed or highly inflated 
and the applicability of the theory is doubtful, or approach the solution given by 
p(s) = p* = {1- (7/p0)}4, in which case the tube ends with this radius though with 
an infinite slope. The occurrence of the solution p = p* points to the phenomenon 
that elastically unstable solutions appear, representing (membrane-like) tubes sup- 
porting compression forces. For example, in figure 2 ( a )  the case p,, < 0, 7 > 0 is 
illustrated, and the solutions in the regionp > p* are of such a type; on these solutions 
CT < 0 as follows from (21). The solution p = p* corresponds to the case that the tube 
is degenerated into one of zero length. Solutions near it correspond to very short tubes 
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supporting the overpressure either by tensile stresses on an inwardly bent tube or 
by compression stresses in an outwardly bent tube. A similar discussion can be given 
for the case 0 < r < p,, which is illustrated in figure 2 (c) ; for the case 0 < p ,  < r the 
phenomenon does not occur, as may be seen in figure 2 ( b ) .  The phenomenon may also 
occur if there is flow in the tube. However, we shall avoid solutions with u < 0, since 
they are not of much practical interest. As follows from (21), there is for all values 
of the parameters a strip around p = 1 in the phase plane, where > 0 for r > 0, 
and we shall restrict our attention to such a strip (which possibly also may extend 
over 0 < p < 00).  In  figure 2(d) the case 0 < q < qE is illustrated. It corresponds to 
the case that (28), (7)  has two solutions p1 < pz (region I1 in figure 1).  Since 8, > 1 
and S, < 1,  and ug > 0 (i = 1,2) ,  it follows from (31) that  p1 is a centrepoint and pz 
is a saddle point. From (4), (10) follows that S + ~ O  as p+O, and from (10) with 
{P(p) +@P(p)}’ > 0 that S decreases monotonically with p ; there is thus a unique line 
p = constant between the centrepoint and the saddle point on which S = 1 ,  and S > 1 
for smaller values of p,  S < 1 for larger values of p. The closed curves inside the 
separatrix loop represent tube shapes that are periodic with a wavelength approaching 
infinity as the loop is approached. They contain flow that is supercritical in part or 
over the full length of the tube. Other solutions show a minimum tube area a t  some 
point of the tube and a continuous widening of the tube with distance away from 
that point; solutions near the separatrix loop represent tubes of which a portion is 
convex outwards, while the rest is concave outwards. Solutions to the right of the 
saddle point correspond to subcritical flow ; solutions surrounding the separatrix loop 
correspond also to supercritical flow in the region around the minimum tube area. 
Near an equilibrium point (24) has the linearized form 

from which the wavelength of periodic solutions may be derived at pi = p1 (the 
centrepoint, then S,  > l) ,  given by 

A similar expression was given by McClurken et al. (1981) in their study of steady, 
supercritical flow in collapsible tubes. A linearized analysis of inviscid wave 
propagation in nearly cylindrical collapsed tubes yields for the wavelength of 
standing waves in a steady flow (McClurken et al. (1981), formula (27), p. 402) in our 
notation 

which differs from (33) by the factor pt(l-p:)-i, undoubtedly as a result of the 
different tube model used by McClurken et al. (1981). Although comparison of 
measured and theoretical wavelengths (figure 5 in McClurken et al.) leads to an 
agreement which is called most satisfactory by the authors, use of (30) may very well 
improve this agreement in particular near p1 = 1 .  (In a comparison with numerical 
calculations, taking friction into account, and given in figure 11 of McClurken et al. 
(1981), (34) is used with the factor (1  --p$ omitted.) Unfortunately, the experimental 
results are not presented in enough detail to allow comparison with (33). In 
figure 2 ( e )  the case q = qE is illustrated. It corresponds to flow limitation in the 
cylindrical uniform-flow solution which is now represented by a higher-order equi- 
librium point (cusp point in p, = pz). Solutions completely to the right of the cusp 

16-2 
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point correspond to subcritical flow; the other solutions correspond also to 
supercritical flow in a region of the tube near the minimum tube area. Finally, in 
figure 2 (f) q > qE is illustrated. There are no equilibrium points, so flow through a 
cylindrical tube is impossible, but there exist solutions with a minimum tube area 
somewhere along the tube and a widening of the tube away from it. 

4. Steady flow through a collapsible tube held open at the ends. Flow 
limitation in non-cylindrical tubes 

We shall now consider the steady, incompressible, inviscid flow t'hrough a col- 
lapsible tube held open at the ends. Finding the streamwise area distribution of the 
tube for a given total pressure p,, flow rate q and pulling force 7 amounts to solving 
a two-point boundary-value problem for (24) with boundary conditions 
p( -1) = p(1) = 1, so that the tube extends from 6 = -1 to 6 = 1. Obviously, a solution 
of this boundary-value problem will be represented in the phase plane by a segment 
of an integral curve, connecting intersection points thereof with the line p = 1. For 
example, in figure 3 ( a )  the segment LU is shown, connecting, in the direction of 
increasing E;, the lower point L on p = 1 with the upper point U ,  and since all along 
the integral curve p < 1 ,  LU represents a collapsed tube with a certain length lLu.  
With (26), and since the phase portrait is symmetric around the p-axis, then 

{p2 + (7 -Po - ! I2)  P2 + Pop4) dp 

( 7 - p , - q 2 ) p 2 + p , p 4 ) 2 ~ '  (35) 

where C for a given pmin may be determined from (25) by putting y = 0. Similarly, 
an integral-curve segment U L  represents an inflated axially symmetric tube of length 
I, , ,  for which, with (26), it  follows that 

{!I2 + (7- Po - q2) P2 + Pop4} dp I,, = 2 ~ l f m i n [ p 4 ( ~ + 2 ~ ~ a , , ( a ) d ~ ~ - { q 2 +  ( ~ - - p , - q ~ ) p ~ + p , p ~ } ~ ] : '  (36) 

where C may be found for a given pmax. Solutions to the boundary-value problem 
will be sought in an indirect way by considering the effects of variation of the 
parameters on tube lengths, corresponding to integral-curve segments L U ,  UL and 
possible combinations of them. The number of solutions for a given tube length then 
follows by cross-plotting. Except in some special cases, the dependence of I,, and 
I , ,  on the parameters can only be traced by numerical calculations. Such calculations 
were made by Reyn & Bakker (1984) for a set of values o f p ,  and q2, and 7 = 0.6 (with 
one exception, wherein 7 is varied), which roughly corresponds to a relative strain 
of 30%. (The measurements by Lyon et al. (1981) are made on collapsible tubes 
stretched up to 100 yo.) For a collapsed part of the tube (p  < l), tube law (5) was used 
with p = 0.001, which corresponds to a wall thickness/tube radius ratio of about 0.1. 
For an inflated part (p > 1) tube law (6) was used with ,u = 0. For each selected pair 
of values for p ,  and p2 the functions I,, (pmin) and/or I,, (pmax) were calculated. From 
this is determined how many solutions for a given tube length 21 are possible. For 
example, figure 3(a)  corresponds to p ,  < 0, p2 = 0, and calculations over a range of 
values of p ,  from - 0.005 to - 0.12 indicate a monotonically decreasing function I , ,  
(pmin) on the interval p2 < pmin < 1. Furthermore from (35) it follows that Z L u +  00 

as pmin-fp2 and ZL,+O as pmin-f 1.  It is then concluded that the boundary-value 
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FIGURE 4. Bifurcation diagram for a given tube length and negative total pressure. 

problem has a unique solution for all tube lengths 0 < 21 < 00. It should be 
emphasized that this conclusion does not rest on a mathematically tied proof for all 
parameter values and possible tube laws, but merely on numerical evidence for some 
choices of numerical values for these parameters. A general statement about the 
solution of the boundary-value problem will therefore be avoided, showing in the first 
place how complicated the answer is for more or less representative values of the 
parameters. In  order to study also the process of flow limitation, the presentation 
will be made with an emphasis on changing the flow rate for a given total pressure. 
Because of the different character of this process a division is made into three cases : 
(i) negative and zero total pressure ; (ii) positive subcritical and critical total pressure; 
(iii) positive supercritical total pressure. The division of positive total pressure is 
connected with the discussion of steady flow through cylindrical tubes given in $2 
and illustrated in figure 1. Under the conditions made with respect to the tube law, 
there are two (possibly coincident) or none such flows for a given total pressure, 
among which there is exactly one solution p = 1 if p ,  > 0. A (positive) total pressure 
will then be called subcritical, critical or supercritical if the flow in the tube p = 1 
at that total pressure is subcritical, critical or supercritical, respectively. In the 
context of $2 this means 0 < p ,  < fP'( l ) ,  p ,  E iP'(l), iP'(1) < p, ,  respectively. 

4.1. Negative and zero total pressure 
In  figure 3 phase trajectories are sketched that may represent solutions of the 
boundary-value problem. They are characterized by pmin, their intersection point 
with the p-axis, and their corresponding tube length I,, = 21 is sketched as a function 
of pmin. They are based on numerical calculations for p ,  = - 0.1, q2 = 0.0002 to 0.02, 
and q2 = 0, p ,  = -0.005 to -0.12. Under no-flow conditions (figure 3a) a unique 
solution is apparent for all tube lengths, 0 < 21 < 00, and the tube is collapsed over 
its full length. In  figure 3 ( b )  it is shown that a slight increase in flow rate causes a 
centrepoint and a separatrix loop to arise in the phase plane and an additional 
(highly) collapsed solution surrounding the separatrix loop appears, represented by 
Z,, (pmin) on 0 < pmin < pc, where pc is the intersection point of the separatrix loop 
with the p-axis. As a result, there are now two solutions for all tube lengths 
0 < 21 < 00, both collapsed over the full length of the tube. The solution completely 
to the right of pz is subcritical, whereas the other one is also subcritical except for 
a supercritical region around the minimum area of the tube. For q = qE (figure 3c) 
the centrepoint and saddle point coincide to form a cusp point and the separatrix 
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FIGURE 5. Flow-limitation values of the flow rate for various values of T ;  po = 0.  

loop has shrunk to one point ; pp = p1 = p2 < 1 .  For cylindrical tubes, increase of the 
flow rate cannot occur since qE is the flow limitation flow rate. For tubes held open 
a t  the ends there are, for all tube lengths, two (collapsed) solutions at q = q E ,  which, 
for a given tube length, disappear after a coalescence if q is increased sufficiently 
(figure 3 4 .  I n  figure 4 the bifurcation diagram for a given tube length and negative 
total pressure is given, where the solutions are characterized by the value of pmin and 
qL > qE is the flow rate at flow limitation in the finite tube. The case p ,  = 0 does not 
differ very much from p ,  < 0;  only figure 3 ( a )  changes in that now pz = 1, and, 
trivially, there is a unique solution p = 1 of the boundary-value problem. Calculations 
for p ,  = 0 were made with q2 ranging from 0 to 0.02. The effect of changes in 7 on 
the process of flow limitation for p ,  = 0 was investigated by calculating the flow rate 
a$ flow limitation as a function of tube length for various values of 7. The effect of 
shortening the tube on postponing flow limitation is clearly visible in figure 5, which 
also shows that  increasing the tension for a given tube length also postpones flow 
limitation. 

4.2. Positive subcritical and critical total pressures 

In figure 6 phase trajectories and corresponding tube lengths for positive subcritical 
total pressures are sketched. They are based on numerical calculations for 
p ,  = 0.00075, q2 = 0 to  0.0007; p ,  = 0.15, q2 = 0 to 0.12. If there is no flow, (figure 
6 a ) ,  the result is similar to that for p ,  < 0 : there is a unique solution for all tube lengths 
0 < 21 < 00, the difference being that the tube is now inflated and represented by 
a segment UL of an integral curve in the phase plane. Curve segments UL are 
characterized by the value of pmax, corresponding to  the maximum area of the tube 
for that solution. Figure 6 ( b )  shows that a slight increase in flow rate causes a 
centrepoint and a separatrix loop to arise in the phase plane, as for p ,  < 0. The line 
p = 1 ,  however, now intersects the separatrix loop and intersects the p-axis between 
the centrepoint and the saddle point. As a result solution-curve segments LU 
representing collapsed tubes appear in addition to the inflated solutions of type UL. 
If U and L are selected to coincide on thep-axis, the LUsegment forms a closed curved 
in the phase plane and the tube extends over one wavelength 9, of a periodic solution 
with pmax = 1. It is found that,  if L and I7 are moved along p = 1 and away from 
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FIGURE 7 .  Bifurcation diagrams for a given tube length and (positive) subcritical total pressures. 
(a )  0 < 21 < Y , ( O ) ;  ( b )  LF1(O) < 21 < 26p1(0); ( e )  nY,(O) < 21 < (n + l)6pl(0). 
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the p-axis, the tube length then decreases monotonically, going to zero for U ,  L going 
to  infinity. Integral-curve segments inside the saddle-to-saddle loop may be extended 
with other LU and/or UL segments, so that the solution then overlaps with one or 
more wavelengths of a periodic solution. For tubes that start with a collapsed part 
there are the possibilities L U ,  L UL, L ITLIT, . . . , and for tubes starting with an inflated 
part UL, ULU, ULUL, . . . .  Solutions indicated with an odd number of letters 
correspond to tube lengths that are an integer multiple of the wavelength of a periodic 
solution; if this multiple is n, then such a situation occurs for 2n+ 1 letters. The 
solutions LUL and ULU, LULUL and ULlJLU, . . . are pairwise related in that the 
transformation [+ -6  (or flow reversal) transforms one into the other. The solutions 
with an even number of letters represent tubes that  are symmetric in E .  A sketch of 
the variation of the tube length 21 for various types of solution is given in figure 6 ( 6 ) .  
For solutions starting with a collapsed part, 21 is given as a function of pmin and for 
those starting with an inflated part as a function of pmax. In drawing this figure, it  
is assumed that the wavelength of a periodic solution increases monotonically with 
the 'amplitude ' = pmax -pmin ; it  has the value 9, for pmax = 1 and co for pmax = pz. 
(The numerical calculations indicate that for some values of the parameters this 
monotonicity is lost on part of the interval; however, we shall not discuss the 
additional complications arising in that case.) As a result, the curves for LUL, ULU, 
LULUL, ULULU, . . . are monotonic, and since UL is monotonic, the curves for 
ULUL, ULULUL, ULULULUL, . .. are also monotonic, The monotonicity of LU, 
however, does not lead to the same conclusion for L UL U ,  L lTL UL U ,  L lTLUL CTL (1, 
. . . , since the curve LU has a vertical tangent at 21 = LYl and the curve LUL has not. 
From figure 6 (b)  it  may be seen that the number of solutions of the boundary-value 
problem increases in a piecewise-constant manner with the tube length, and is a t  least 
4n, where n is the integer number of times that  Yl is included in the tube length. 
This effect also occurs when the flow rate is increased only slightly above zero, since 
with (35) it may be shown that =!Zl has a finite limit (not equal to zero) for q+-0. If 
q+p% (figure 6c),  the saddle point pz has moved to p = 1, and Y1 --f 00. For all tube 
lengths 0 < 21 < 00 only two solutions are left: a collapsed solution LtJ and the 
solution p E 1. Further increase of q yields the sequence given in figure 6 (d-f ), which 
is similar to  the sequence in figure 3 (b-d) for poo < 0, and the flow-limitation process 
takes place as for po < 0. 

Bifurcation diagrams for given tube lengths and total pressure and varying flow 
rates may now be drawn on the basis of figure 6, and are sketched in figure 7 for 
various tube lengths. Tube lengths are measured in units of Y , ( O ) ;  where Y ( q )  is 
the wavelength of a periodic solution with pmax = 1 for a flow rate q < p i  The 
situation for 0 < 21 < =!Zl(0) is given in figure 7 (a).  For q = 0 there is one solution, 
an inflated one (UL) and indicated by its value of pmax. whereas for a slightly higher 
q ,  a collapsed solution (LU)  also appears, indicated by its value ofpmi,. On increasing 
q to  p i  the UL solution merges into the solution p ( < )  = 1 and further increase leads 
to two collapsed solutions which, a t  the flow-limitation value qL, merge (gL > qE) .  
Figure 7 ( a )  is similar to figure 4 for p ,  < 0. 

The situation for Yl(0) < 21 < 2 9 , ( 0 )  is given in figure 7 ( b ) .  Again, there is one 
(inflated) solution lJL for q = 0. Increase of q now leads to the addition of the periodic 
solutions ULU and LLTL and the symmetric solution ULUL and, depending on a more 
detailed knowledge of the tube length, possibly also to two symmetric solutions of 
the type LITLIT, which disappear after mergence a t  some higher flow rate. At a still 
higher flow rate q = qo, the three solutions ULU, LUL and ULUL merge into one 
solution A,, which extends over one wavelength of a periodir solution with 

3 
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FIGURE 8. Flow-limitation values of the flow rate as a function of tube length. 

wavelength Y1 = 21 (and pmax = 1 ) .  For q > qo this solution changes into a collapsed 
one LU and the rest of the process is the same as sketched in figure 7 ( a ) ,  but with 
a smaller value of qL ( > q E )  since the tube is longer. For nLZl(0) < 21 < (n+ 1)2,(0) 
the situation as sketched in figure 7 (c )  prevails. Again there is one (inflated) solution 
UL for q = 0. Increase of q now leads to the addition of 2 1 ~  periodic solutions 

ULU . . . u LUL . . . fi 
ULU, LUL, . . . ~ wl’ 

and 2% - 1 symmetric solutions 
LU . . .  u LTL ... L 

ULUL, ...?-, -, 
2n 2 n + 2  

and possibly also to two symmetric solutions of the type 

which disappear after mergence a t  some higher flow rate. At a still higher flow rate 
q = q,-,, the solutions 

U L U .  . . U LUL . . . L UL.. . L 
-,- and - 

2n+l  2 n + l  211 + 2 
merge into one solution A,-,, which extends over n wavelengths of a periodic 
solution with wavelength 6P1(qn-1) (and pmax = 1 ) .  For q > qnpl ,  this solution 
changes into a symmetric one 

L U . .  . IT 
2n 

LU ... u 
3n 

at a higher flow rate. This process is repeated a t  the flow rates q = q,-2, qn-,, . . . , 
q1 a t  which the solutions A,-,, A,-,, . . . , A ,  exist, being solutions which extend over 
n-1, n - 2 ,  ..., 2 wavelengths of a periodic solution with wavelength U,(qi) (and 
pmax = 1 )  respectively, where i = n - 2 ,  n - 3 ,  . . . , 1 respectively. Finally, for some 
q > q1 all solutions have disappeared, except for the ones also discussed in relation 
to figure 7 ( b ) ,  and the process continues as in that  figure with smaller Q ~ .  s i x e  again 
the tube is longer than in the previous case. The process may be viewed as a sequence 

- 
which merges with the other solution of type 

__r_l 
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(4 ( b )  (C) 

0 < 21 < $ P , ( O ) .  ( a )  0 < 21 < t a P ;  ( b )  21 = 89; (c) gu < 21 < 9. 
FIGURE 10. Bifurcation diagrams for a given tube length and (positive) supercritical total pressures ; 

of flow limitations of higher order with the final flow limitation indicated as that of 
first order. Note that all flow limitations occur in tubes that start with a collapsed 
part and that shortening the tube postpones flow limitation as for negative and zero 
total pressure. The qualitative features of figure 5 k0 = 0) may thus again be 
recognized in the curve for subcritical total pressure in figure 8. 

For (positive) critical total pressure, q E  = p i ,  and the only difference with 
subcritical total pressure is that  now figures 6(c-e) coincide with one figure like 
figure 6 ( e ) ,  with p1 = p, = 1 ,  and with the curve LU replaced by p = 1 .  As a result i t  
may be concluded that there is no qualitative difference with subcritical total pressure. 

4.3. Positive supercritical total pressures 

In figure 9 phase trajectories and corresponding tube lengths for positive supercritical 
total pressures are sketched, They are based on numerical calculations for p ,  = 0.15, 
q2 = 0 to 0.30 and for p ,  = 0.625, q2 = 0 to 1.25. For 0 < q < p i  there is no difference 
with subcritical total pressure; figures 9(a,b) are identical with figure 6(a ,  b )  
respectively. In  contrast, however, figure 9(c) shows that if q+p,$, the centrepoint p1 
has moved to p = 1 ,  and LZl + 9, where Y is the wavelength of a periodic solution 
at the centrepoint if p = 1 ,  q = p i ,  which with ( l o ) ,  (21) ,  (30) and (33), may be 
given by 7c (27)i Y =  

2(p,  - ip'( 1 ))i . (37) 

With further increase of q the centrepoint crosses the line p = 1 and the situation 
is as in figure 9 ( d ) .  Figure 9(b-d) have been drawn, using the same observations as 
given previously. Since, however, if P ( l )  = 0, q = p i ,  p ,  > 0, the function p(6) 1 
is an exact solution, nearby solutions may be obtained in a mathematically strict 
sense using the Lyapunov-Schmidt method (Reyn & Besjes 1984). Figure 9 ( M )  
include information obtained in this way. It was assumed, as in $ 2 ,  that P ( l )  = 0, 
P'(p) > 0, (P(p) +ipF(p))'  > 0, and 7 > 0. I n  figure 9 ( d )  9, is the wavelength of a 
pyriodic solution with pmin = 1 ,  and 9, --f 9 as q+p i .  If q is increased further above 
p i ,  the separatrix loop moves to the right until, for some flow rate q = q*, the line 
p = 1 intersects the loop, a t  the p-axis; then Y, = a, and only solutions LU remain 
ifq > q*, as is sketched in figure 9 ( e e g ) .  Bifurcation diagrams for given tube lengths, 
(positive) supercritical total pressures and varying flow rates may now be drawn on 
the basis of figure 9;  however, apart from z 1 ( O )  9 should also be used to measure 
the tube length. For 0 < 21 < Yl(0) figure lO(a-c) gives diagrams for 0 < 22 < $9, 
21 = &Y, +9 < 21 < 9 respectively. For 0 < 21 < &Y, figure 10(a)  shows that there 
is almost no difference with subcritical total pressure, as illustrated in figure 7 (a) ,  
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FIQURE 11. Bifurcation diagrams for a given tube length and (positive) supercritical total pressures, 
Y , ( O )  < 21 < 2Yl(0). ( a )  0 < 21 < i Y ;  ( b )  22 =+Y;  ( c )  < 21 < 9; ( d )  21 = 2'; ( e )  
Y < 22 < Y* < 142;  (f) 21 = Y * ;  (9 )  Y* < 21 < l ip; ( h )  21 = 149;  (i) 149 < 21 < 2 9 .  

the only difference being that the limiting flow rate qL is either larger, equal to or 
smaller than q E ,  and has the minimum value p i ,  whereas for the subcritical case 
qL > q E .  As in the subcritical case shortening the tube postpones flow limitation, and 
this is so irrespective of the value of P 1 ( O ) ,  so that the descending part of the curve 
for supercritical total pressure in figure 8 applies also for 21 > 9 , ( 0 )  as long as 
21 < 82'. For 21 = 2 9 ,  figure 10(b) shows that flow limitation takes place at  qL = p i  
through the mergence of a collapsed and an inflated solution in the solution p ( ( )  = 1.  
For 21 > $9, (figure lOc) flow limitation takes place at a value of qL satisfying 
p i  < qL < q* < qE through the mergence of two inflated solutions, and it may be 
seen that lengthening the tube with respect to 2' now postpones flow limitation, 
irrespective of its ratio to g 1 ( O ) ,  so the ascending part of the curve for supercritical 
total pressure in figure 8 applies also for 21 > Yl(O) as long as 21 > i9. The effect 
of increasing the ratio of the tube length with respect to 9 on the bifurcation diagram 
may also be described as a motion of the curves in figure 10 from a 'nose-down' to 
a 'nose-up' position. This is also the effect of changing this ratio for 21 > S 1 ( O ) .  The 
effect of increasing the ratio of the tube length to YI(O) is similar to that for the 
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subcritical case : more solutions appear a t  low flow rates, which successively disappear 
when the flow rate is raised. I n  order to illustrate the combined effect of these two 
ratios we may, for example, consider the bifurcation diagrams for 9, (0) < 21 < 3Yi4,(0), 
as given in figure 11. The diagram for 0 < 21 < i9 is given in figure I 1  (u.), 
which is almost the same as figure 7 ( b )  for subcritical total pressure, the difference 
being as discussed before when comparing figure lO(u.)  and 7 ( a ) .  I n  the sequence 
of figure 11 (a-c), corresponding to increasing values of 2 1 / 9 ,  the motion of the 
most outward curve from a ' nose-down ' to 'nose-up ' position may again be noted. 
For 31 = 9 the bifurcation diagram is given in figure 11 (d ) ,  and i t  may be 
noticed that point A,, where solutions [JLU, ULIJL and LUL come together 
has moved to q = p i ,  so that a t  this point the bifurcation is present as 
found by bifurcation analysis (Reyn & Besjes 1984). Figure 11 (e) refers to 
9 < 21 < 9, < l&Y, where 9, is to  be defined below. It differs from the previous 
figure in that the curve for ULU has lost its connection with the curve ULUL and 
makes a connection with the curve UL at a point B, at q, > p i ,  pmin = 1, pmax > I .  
Point B, represents a solution which extends over one wavelength of a periodic 
solution with wavelength Y 2 .  It is also the solution into which the solutions LCJL 
and LULU merge, the latter curve starting where the ULUL curve ends: at the point 
q = p i ,  pmin = pmax = I ,  representing the solution p(5) = 1. The solutions LULU 
indicated by the dotted curve in figure 11 ( e )  extend to higher values of q the longer 
the tube is and may give rise to  three solutions LULU for q > p ,  and 21 close to 9*. 
Here 9* is the tube length, corresponding to a horizontal inflexion point of the curve 
LULU in figure 9 ( d )  for the flow rate q, where such a point on the curve LULU 
appears. The diagram for 21 = 9, is given in figure 11 (f); the existence of a 
horizontal inflexion point on LULU in figure 9 ( d )  is reflected in this figure in that 
from q = p i  up there are three curves LULU which meet a t  some point for 
p i  < q < q,, and that one curve for LlJLU continues for higher values of q, Further 
increase of 21 above 9* detaches the lower LULU curve from the other two, which 
with the ULUL curve forms a ' nose-down ' curve in figure 11 (9)  and a ' nose-up ' curve 
in figure 11 ( i) .  

As a final example, in figure 12 a bifurcation diagram is given for 
n9,(O) < 21 c (n+ l)Y1(O), (n++)9 < 21 < (n+ 1)9, which should be considered as 
the generalization of figure 10 (c) and 11 (i). It confirms the general impression that 
more solutions appear near q = 0 if the ratio of tube length to Y , ( O )  is raised and 
that with increasing the flow rate solutions pairwise disappear, in what may be called 
higher-order flow limitations, until finally two solutions are left which disappear at 
q = qL,  the (first-order) flow-limitation value. 

5. Concluding remarks 
The main conclusion of this paper is that  there may be many solutions to  the 

problem of steady flow through a collapsible tube held open a t  the ends. This 
multiplicity arises in two ways. The first is related to the fact that  for a wide class 
of tube laws there are more cylindrical tube shapes into which a given cylindrical 
elastic tube can be deformed, and which allow a flow of a given total pressure and 
flow rate. If the tube is held open at the ends, and a pulling force thereby is exerted, 
corrections to the possible cylindrical shapes will result, but multiplicity will be 
retained. The second way occurs for positive total pressures and is related to  the 
possibility of area-periodic tube shapes in tubes under longitudinal tension, in 
particular to  the fact that  the wavelengths of such shapes are amplitude dependent. 
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FIGURE 12. Bifurcation diagram for a given tube length and (positive) supercritical total pressures; 
nY, (O)  < 21 < (n+l)Y,(O),  (n+$)Y < 21 < ( n + l ) Y .  

Because of these features, the occurrence of a multiplicity of solutions of the 
boundary-value problem will not critically depend on the particular modelling of the 
elastic behaviour of the tube wall, and will also remain when this behaviour is 
described in a more accurate manner. 

Other points to be mentioned in relation to the practical implications of the results 
presented in this paper are stability of solutions and influence of dissipative effects. 
Although further research would be needed to answer these questions completely, 
some remarks can already be made on the basis of existing knowledge in the literature. 
I n  this respect, the calculations made by Cancelli & Pedley (1985) mentioned in $ 1  
are interesting. For these calculations the collapsible segment, held bpen by the rigid 
parts of the circuit, was brought into an initial state where the collapsed segment 
has uniform area and the velocity is uniform and subcritical. By definition, the total 
pressure is subcritical, and figure 6 ( c )  applies, with the inviscid flow in the uniform 
tube corresponding to the saddle point. Under these conditions, there also would be 
another inviscid solution, a collapsed one, involving supercritical flow in the region 
around the minimum area of the tube, which probably destabilizes the flow. If collapse 
of the tube is then initiated by increasing the pressure in the surrounding chamber 
over a short time to a higher constant value, this effectively means, in the present 
context of measuring pressure differences, that p ,  is decreased a t  constant flow rate 
q (some change in 7 will also result). As a result, the saddle point in figure 6 shifts 
to the left, possibly also to the extent that it coincides with the centrepoint and forms 
a cusp point or that the singular point disappears altogether, and any one of the 
figure 6 (d-f ) (or figure 3 M) prevails. As long as there is still a singular point there are 
two solutions for all tube lengths, a subcritical one and one involving also supercritical 
flow. Apparently, the calculations by Cancelli & Pedley (1985) yielding a stable 
subcritical solution if the initial-state speed index is low enough and the tension high 
enough (u, = 0.05, u = 4 in their notation; p. 389), refers to this situation. As in the 
case with the uniform solution no mention is made of another inviscid solution 
yielding a more collapsed state of the tube. If the initial speed index is raised and 
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the tension decreased the collapse process appears to be more drastic, and a region 
of unsteady supercritical flow appears near the smallest tube area. For the case 
computed by Cancelli & Pedley (1985) (u, = 0.1, v = 2 in their notation; pp. 388- 
391) it  is not clear whether steady-state solutions are possible. One possibility 
would be that figure 6 (f) (or 3 d )  applies, but that the tube is too long to admit steady 
states. Another possibility is that there are two steady-state solutions, possibly very 
close to each other, of which, at this moment, is not known whether they contain 
a supercritical region and what their stability properties are. (Parameter values can 
be chosen such that this situation occurs with both solutions slightly collapsed and 
with minor dissipative effects.) Unfortunately, the calculations were stopped at 
t = 2058, when the tube at some point was nearly completely collapsed. That 
complete collapse is inevitable is not quite clear from a consideration of the immediate 
approach to steady flow without considerable shift of the narrowest point, and 
involving the neglect of the longitudinal tension term. In  particular if complete 
collapse occurs, however, and no major changes in the inflow take place, a possibility 
would be that after t = 2058 the constriction continues to move downstream until 
at the downstream end the tube is opened up again and either an oscillation sets in 
or a steady state is eventually reached. Even if viscous effects are neglected 
oscillations of this type could be of practical interest if the collapse time is very small 
compared with the viscous diffusion time, which in particular would be the case for 
a downstream rigid part with low resistance and inertia. 

In the model developed by Cancelli & Pedley (1985),  the magnitude of the friction 
in regions of attached flow (i.e. upstream of the narrowest point in the tube) is not 
important; the shape of the tube is not noticeably affected by the inclusion of the 
friction term. This is a result of the fact that at high values of the Reynolds number, 
viscous friction and energy dissipation have a relatively small effect when the flow 
is attached, unless the cross-sectional area becomes very small, and a large effect when 
flow separation occurs. The pressure recovery in the diverging region of the tube when 
flow separation occurs was taken into account through use of a constant x in the 
momentum equation, where x = 1 if there is no energy loss (no separation), and x = 0 
if there is no pressure recovery, and in the calculations by Cancelli & Pedley (1985) 
the values x = 0.2  and 0.5 were used. In  the same way the calculations in this paper 
may be adjusted to separated flows, simply through replacing q2 by xq2 in ( 3 ) ,  (7 )  
and (24) .  Separation would set in for a certain adverse pressure gradient, which in 
the phase plane leads to the condition that there is separation for dp/d( > p and 
reattachment again for dp/d< < b 2 p ,  where yz < y1 since there is hysteresis in the 
separation process. (In the paper by Cancelli & Pedley the values 0.2 and 0 . 3  were 
selected for y1 and 0.05 and 0.1 for yz.) Steady-state solutions with separation, as 
depicted in figure 9 of Cancelli & Pedley (1985), could be reproduced by integration 
of (24)  and traced in the phase plane. In figure 6 ( d )  then, the curve LU to the right 
of the saddle point would be followed starting at the point L and continuing till the 
line dp/d< = b l p  is reached. Then, by making a value o f x  not equal to 1, a change 
of the phase portrait takes place, resulting in a shift of the saddle point to the left 
and of the centrepoint to the right. A continuation along the integral curve towards 
the point U yields the shape of the tube in the separated region. In this way, a 
quantitative basis for comparison with experimental results is obtained, which may 
be used as a quantitative check on the assumptions made in the present model. 

Solutions with area waves are associated with supercritical flow and have been 
observed experimentally by Kececioglu et al. (1981), who studied steady, supercritical 
flow in collapsible tubes under longitudinal tension. The tube was held open at  its 
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downstream end a t  its original diameter and compressed by an adjustable sphincter 
nozzle at the upstream end. For sufficiently high downstream pressures shock-like 
transitions to subcritical inflated states, with positive transmural pressure, occur and 
a train of standing area waves appears upstream of the 'shock'. The boundary-value 
problem associated with this situation is different from that discussed in this paper 
and it is clear from the start that  dissipative effects play a large role, because of the 
separation that undoubtedly will occur in the 'shock '. If the tube shape is traced in 
the phase plane, a curve would be found that starts in some point inside the separatrix 
loop of a phase portrait corresponding to inflow values ofp,, q and T ,  and which spirals 
out, around the centrepoint, with p ,  and T shifting to end a t  some point on the p-axis, 
where the flow is subcritical. The spiralling of the curve corresponds to the observed 
streamwise growth of the standing waves, and unlike the subcritical flow discussed 
before, the skin friction, and in particular its oscillatory component, is given as an 
explanation of this growth by McClurken et al. (1981). If dissipative effects are taken 
into account through the effects of separation, while neglecting skin friction, and this 
is done by replacing q2 by xq2 (0 < x < 1 )  if dp/dc > b l p  (and once started 
separation remains as long as dp/df > b 2 p ,  where yz < y l ) ,  a spiralling-out integral 
curve may also be obtained. This may be demonstrated as follows. For simplicity 
assume that y1 = y2 = 0 and p ,  is constant, then in the lower half-plane there exist 
halves of closed curves nested around a centrepoint for q2, which is to the left of the 
centrepoint for xq2(x < 1 )  around which halves of closed curves in the upper 
half-plane are clustered. If these curves are traversed in a clockwise direction a spiral 
curve emerges. 
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